skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Yanjing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Synthetic opioids, especially fentanyl and its analogs, have created an epidemic of abuse and significantly increased overdose deaths in the United States. Current detection methods have drawbacks in their sensitivity, scalability, and portability that limit field‐based application to promote public health and safety. The need to detect trace amounts of fentanyl in complex mixtures with other drugs or interferents, and the continued emergence of new fentanyl analogs, further complicates detection. Accordingly, there is an urgent need to develop convenient, rapid, and reliable sensors for fentanyl detection. In this study, a sensor is prepared based on competitive displacement of a fluorescent dye from the cavity of a supramolecular macrocycle, with subsequent fluorescence quenching from graphene quantum dots. This approach can detect and quantify small quantities of fentanyl along with 58 fentanyl analogs, including highly potent variants like carfentanil that are of increasing concern. Detection of these agents is possible even at 0.01 mol% in the presence of common interferents. This simple, rapid, reliable, sensitive, and cost‐effective approach couples supramolecular capture with graphene quantum dot nanomaterial quenchers to create a tool with the potential to advance public health and safety in the context of field‐based detection of drugs in the fentanyl class. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026